Articles

A useful media library of SensiML AutoML IoT information

View  
Grid view

Articles

Whitepapers and articles on AI and machine learning, and IoT sensing along with practical guidance and examples for implementing designs using our AutoML tools.
Back
Next
BUILDING SMART IOT DEVICES FASTER WITH AUTOML
This comprehensive overview defines the smart edge AI approach for building IoT sensing applications and explains the many benefits of creating intelligent endpoints. It then discusses automated machine learning workflows (known as “AutoML”) and reviews the key stages of the development process from modeling to prototyping. Most importantly, the paper also gives developers new to AI and machine learning practical guidance and examples for implementing designs using AutoML tools.

READ FULL STORY
THE OPPORTUNITY FOR AI AT THE EDGE AND BEYOND
"Internet of Things (IoT) endpoints have, until very recently, been focused on acquiring raw sensor data and feeding the associated data back towards the “core” of the network for processing. The network’s core data processing resources, whether local or cloud connected, have traditionally been the focus for analyzing the data to identify meaningful events and making decisions based upon the results. As Artificial Intelligence (AI) has become more prominent for sensor data analysis, these same centralized processing resources would seem to be the obvious place for this processing to be implemented."

READ FULL STORY
APP NOTE: SUPPORTING CUSTOM SENSORS AND EMBEDDED DEVICES
This document describes the protocols, supporting documentation, and reference code needed for SensiML users to adapt their customized board firmware and SensiML software configuration to properly interface and work in a manner consistent with the supported evaluation kits.
READ FULL STORY
THE ROLE FOR SENSORS IN INTELLIGENT IOT NETWORKS
"While much has been made of AI and ML analytics in the cloud and in edge computing, the overlooked opportunity for analytics contributions at the extreme edge (i.e. the sensor processor itself) remains largely untapped. This presentation - delivered at Sensors Expo 2018 in San Jose, CA - delves into the current and forthcoming advancements in extreme edge processing as part of an overall IoT network solution and the benefits and challenges of a more active role for sensor analytics processing."

READ FULL STORY
SMART SENSORS FULFILLING THE PROMISE OF THE IOT
"Counter intuitively, it is often more efficient to simply leave a sensor on permanently, waiting to identify useful information, e.g. an accelerometer in a step counter application. Our sensor system must intelligently determine which data is worth transferring to the cloud and thereby efficiently utilize the available bandwidth and power. The key is for local on-sensor processing to discard most of this superfluous data autonomously and thus save valuable system driver capacities."

READ FULL STORY