Boosting

In machine learning, boosting is an ensemble meta-algorithm for primarily reducing bias, and also variance[1] in supervised learning, and a family of machine learning algorithms that convert weak learners to strong ones.[2] Boosting is based on the question posed by Kearns and Valiant (1988, 1989):[3][4] “Can a set of weak learners create a single strong learner?” A weak learner is defined to be a classifier that is only slightly correlated with the true classification (it can label examples better than random guessing). In contrast, a strong learner is a classifier that is arbitrarily well-correlated with the true classification.